Sistema de apoyo al diagnóstico médico de COVID-19 mediante mapa cognitivo difuso
Keywords:
diagnóstico médico, enfermedades infecciosas, mapa cognitivo difuso, COVID-19Abstract
Introducción: Los escenarios de convivencia de las diversas poblaciones son muy complejos, lo que contribuye con la propagación de enfermedades. Diagnosticar tempranamente enfermedades infecciosas representa una tarea fundamental para disminuir su propagación y evitar epidemias. Sin embargo, la inconsistencia en los datos de poblaciones y la imposibilidad de contar con un diagnóstico oportuno en muchos casos trae como consecuencia la proliferación de pandemias tales como la COVID-19.
Objetivo: Desarrollar un sistema de apoyo al diagnóstico médico para COVID-19 a partir de la modelación de las relaciones causales de los criterios de diagnóstico, para conformar el mapa cognitivo difuso.
Métodos: Para el desarrollo de la investigación se utilizaron métodos teóricos, empíricos y estadísticos, tales como: analítico-sintético, inductivo-deductivo, hipotético-deductivo, modelación. Como método empírico se utilizó la entrevista semiestructurada con la intención de recoger información que permitiera incluir contenidos no prescritos y precisar el conocimiento de los expertos sobre los principales indicadores para la toma de decisiones en el diagnóstico médico de la COVID-19.
Resultados: El sistema funciona a través de un mapa cognitivo difuso para modelar las relaciones causales que representan la base de la inferencia. Se utilizan técnicas de inteligencia artificial como base al diagnóstico médico. Se presenta un ejemplo demostrativo para el diagnóstico médico de la COVID-19 en el que se modelan las relaciones causales de los diferentes conceptos que describen la enfermedad provocada.
Conclusiones: El sistema diseñado constituye una herramienta viable de apoyo a la toma de decisiones en el diagnóstico médico de la COVID-19, que permite obtener criterios evaluativos a partir de la modelación de las relaciones causales, esto lo hace extensible a otros tipos de situaciones de emergencias sanitarias.
Downloads
Published
How to Cite
Issue
Section
License
Aviso de derechos de autor/a
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).